- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Biass, S. (1)
-
Curran, K_C (1)
-
Houghton, B_F (1)
-
Llewellin, E_W (1)
-
Mouginis-Mark, P. (1)
-
Orr, T_R (1)
-
Parcheta, C_E (1)
-
Thordarson, T. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Basaltic lava flows can be highly destructive. Forecasting the future path and/or behavior of an active lava flow is challenging because topography is often poorly constrained and lava has a complex rheology and emplacement history. Preserved lavas are an important source of information which, combined with observations of active flows, underpins conceptual models of lava flow emplacement. However, the value of preserved lavas is limited because pre-eruptive topography and, thus, syn-eruptive lava flow geometry are usually not known. Here, we use tree-mold data to constrain pre-eruptive topography and syn-eruptive lava flow geometry of the July 1974 flow of Kīlauea (USA). Tree molds, which are formed after advancing lava encloses standing trees, preserve the lava inundation height and the final preserved thickness of lava. We used data from 282 tree molds to reconstruct the temporal and spatial evolution of the ~ 2.1 km-long July 1974 flow. The tree mold dataset yields a detailed dynamic picture of staged emplacement, separated by intervals of ponding. In some ponded areas, flow depth during emplacement (~ 5 m) was twice the preserved thickness of the final lava (2–3 m). Drainage of the ponds led to episodic surges in flow advancement, decoupled from fluctuations in vent discharge rate. We infer that the final breakout occurred after the cessation of fountaining. Such complex emplacement histories may be common for pāhoehoe lavas at Kīlauea and elsewhere in situations where the terrain is of variable slope, and/or where lava is temporarily perched and stored.more » « less
An official website of the United States government
